.RU

Кодирование информации. Способы кодирования - Практическое задание на проведение расчетов с помощью электронной таблицы. Билет №2



^ Кодирование информации. Способы кодирования


Кодирование информации. В процессе преобразования информации из одной формы представления (знаковой системы) в другую осуществляется кодирование. Средством кодирования служит таблица соответствия, которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем.

В процессе обмена информацией часто приходится производить операции кодирования и декодирования информации. При вводе знака алфавита в компьютер путем нажатия соответствующей клавиши на клавиатуре выполняется его кодирование, т. е. преобразование в компьютерный код. При выводе знака на экран монитора или принтер происходит обратный процесс — декодирование, когда из компьютерного кода знак преобразуется в графическое изображение.

изображений и звука. Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме. При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно. При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.

Примером аналогового представления графической информации может служить, скажем, живописное полотно, цвет которого изменяется непрерывно, а дискретного — изображение, напечатанное с помощью струйного принтера и состоящее из отдельных точек разного цвета.

Примером аналогового хранения звуковой информации является виниловая пластинка (звуковая дорожка изменяет свою форму непрерывно), а дискретного — аудиокомпакт-диск (звуковая дорожка которого содержит участки с различной отражающей способностью).

Графическая и звуковая информация из аналоговой формы в дискретную преобразуется путем дискретизации, т. е. разбиения непрерывного графического изображения и непрерывного (аналогового) звукового сигнала на отдельные элементы. В процессе дискретизации производится кодирование, т. е. присвоение каждому элементу конкретного значения в форме кода.

Дискретизация — это преобразование непрерывных изображений и звука в набор дискретных значений, каждому из которых присваивается значение его кода.

Кодирование информации в живых организмах. Генетическая информация определяет строение и развитие живых организмов и передается по наследству. Хранится генетическая информация в клетках организмов в структуре молекул ДНК (дезоксирибонукле-иновой кислоты). Молекулы ДНК состоят из четырех различных составляющих (нуклеотидов), которые образуют генетический алфавит.

Молекула ДНК человека включает в себя около трех миллиардов пар нуклеотидов, и в ней закодирована вся информация об организме человека: его внешность, здоровье или предрасположенность к болезням, способности и т. д.


^ Основные характеристики компьютера (разрядность, тактовая частота, объем оперативной и внешней памяти, производительность и др.)

Процессор. Важнейшей характеристикой процессора, определяющей его быстродействие, является его частота, т. е. количество базовых операций (например, операций сложения двух двоичных чисел), которые производит процессор за 1 секунду. За двадцать с небольшим лет тактовая частота процессора увеличилась в 500 раз, от 4 МГц (процессор 8086, 1978 г.) до 2 ГГц (процессор Pentium 4, 2001 г.). Другой характеристикой процессора, влияющей на его производительность, является разрядность процессора. Разрядность процессора определяется количеством двоичных разрядов, которые процессор обрабатывает за один такт. Разрядность процессора увеличилась за 20 лет в 8 раз. В первом отечественном школьном компьютере «Агат» (1985 г.) был установлен процессор, имевший разрядность 8 бит, у современного процессора Pentium 4 разрядность равна 64 бит.

Оперативная (внутренняя) память. Оперативная память представляет собой множество ячеек, причем каждая ячейка имеет свой уникальный двоичный адрес. Каждая ячейка памяти имеет объем 1 байт.

В персональных компьютерах величина адресного пространства процессора и величина фактически установленной оперативной памяти практически всегда различаются. Например, объем адресуемой памяти может достигать 4 Гбайт, а величина фактически установленной оперативной памяти будет значительно меньше — скажем, * всего» 64 Мбайт.

Оперативная память аппаратно реализуется в виде модулей памяти различных типов (SIMM, DIMM) и разного объема (от 1 до 256 Мбайт). Модули различаются по своим геометрическим размерам: устаревшие модули SIMM имеют 30 или 72 контакта, а современные модули DIMM — 168 контактов.

Долговременная (внешняя) память. В качестве внешней памяти используются носители информации различной информационной емкости: гибкие диски (1,44 Мбайт), жесткие диски (до 50 Гбайт), оптические диски CD-ROM (650 Мбайт) и DVD (до 10 Гбайт). Самыми медленными из них по скорости обмена данными являются гибкие диски (0,05 Мбайт/с), а самыми быстрыми — жесткие диски (до 100 Мбайт/с).

Производительность компьютера. Производительность компьютера является его интегральной характеристикой, которая зависит от частоты и разрядности процессора, объема оперативной (внутренней) и долговременной (внешней) памяти и скорости обмена данными. Производительность компьютера нельзя вычислить, она определяется в процесее тестирования по скорости выполнения определенных операций в стандартной программной среде.


Качественные и количественные характеристики информации. Свойства информации (новизна, актуальность, достоверность и др.). Единицы измерения количества информации

Информация в биологии. В биологии понятие информация связывается с целесообразным поведением живых организмов. Такое поведение строится на основе получения и использования информации об окружающей среде.

Понятие информация в биологии применяется также в связи с исследованиями механизмов наследственности. Генетическая информация передается по наследству и хранится во всех клетках живых организмов. Гены представляют собой сложные молекулярные структуры, содержащие информацию о строении живых организмов. Последнее обстоятельство позволило проводить научные эксперименты по клонированию, т. е. созданию точных копий организмов из одной клетки.

Информация в кибернетике. В кибернетике (науке об управлении) понятие информация используется для описания процессов управления в сложных системах (живых организмах или технических устройствах). Жизнедеятельность любого организма или нормальное функционирование технического устройства связано с процессами управления. Процессы управления включают в себя получение, хранение, преобразование и передачу информации.

Информация и знания. Человек получает информацию из окружающего мира с помощью органов чувств, анализирует ее и выявляет существенные закономерности посредством мышления, хранит полученную информацию в памяти. Процесс систематического научного познания окружающего мира приводит к накоплению информации в форме знаний (фактов, научных теорий и т. д.).

Только при условии, что информация полезна, дискуссия приобретает практическую ценность. Бесполезная информация создает информационный шум, который затрудняет восприятие полезной информации. Примерами передачи и получения бесполезной информации могут служить некоторые конференции и чаты в Интернете.

Широко известен термин «средства массовой информации» (газеты, радио, телевидение), которые доводят информацию до каждого члена общества. Обязательно, чтобы такая информация была достоверной и актуальной. Недостоверная информация вводит членов общества в заблуждение и может стать причиной возникновения социальных потрясений. Неактуальная информация бесполезна, и поэтому никто, кроме историков, не читает прошлогодних газет.

Чтобы человек мог правильно ориентироваться в окружающем мире, ему нужна полная и точная информация. Задача получения полной и точной информации стоит перед наукой. Человек получает полную и точную информацию о природе, обществе и технике в процессе обучения.

Единицы измерения количества информации. За единицу количества информации принимается такое количество информации, которое содержит сообщение, уменьшающее неопределенность знаний т два раза. Такая единица названа бит.

Следующей по величине единицей измерения количества информации является байт, причем

1 байт = 2^3 бит = 8 бит.

Кратные байту единицы измерения количества информации вводятся следующим образом:


    


^ Внешняя память компьютера. Различные виды носителей информации, их характеристики (информационная емкость, быстродействие и др.)


Основной функцией внешней памяти компьютера является способность долговременно хранить большой объем информации (программы, документы, аудио-и видеоклипы и т. д.). Устройство, которое обеспечивает запись/считывание информации, называется на копателем или дисководом, а хранится информация на носителях (например, дискетах).

В накопителях на гибких магнитных дисках (НГМД или дискетах) и накопителях на жестких магнитных дисках (НЖМД или винчестерах), в основу записи, хранения и считывания информации положен магнитный принцип, а в лазерных дисководах — оптический принцип.

Гибкие магнитные диски. Гибкие магнитные диски помещаются в пластмассовый корпус. Такой носитель информации называется дискетой. Дискета вставляется в дисковод, вращающий диск с постоянной угловой скоростью. Магнитная головка дисковода устанавливается на определенную концентрическую дорожку диска, на которую и записывается (или считывается) информация.

В целях сохранения информации гибкие магнитные диски следует предохранять от воздействия сильных магнитных полей и нагревания, так как это может привести к размагничиванию носителя и потере информации.

Жесткие магнитные диски. Жесткие магнитные диски представляют собой несколько десятков дисков, размещенных на одной оси, заключенных в металлический корпус и вращающихся с высокой угловой скоростью. За счет множества дорожек на каждой стороне дисков и большого количества дисков информационная емкость жестких дисков может в десятки тысяч раз превышать информационную емкость может достигать 50 Гбайт.

Чтобы сохранить информацию и работоспособность жестких дисков, необходимо оберегать их от ударов и резких изменений пространственной ориентации в процессе работы.

Лазерные дисководы и диски. Лазерные дисководы используют оптический принцип чтения информации. На лазерных дисках CD (CD — Compact Disk, компакт диск) и DVD (DVD — Digital Video Disk, цифровой видеодиск) информация записана на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью. Лазерный луч падает на поверхность вращающегося диска, а интенсивность отраженного луча зависит от отражающей способности участка дорожки и приобретает значения 0 или 1.

Для сохранности информации лазерные диски надо предохранять от механических повреждений (царапин), а также от загрязнения.

Для пользователя имеют существенное значение некоторые технические характеристики различных устройств хранения информации: информационная емкость, скорость обмена информацией, надежность ее хранения (табл. 2).


Функциональная схема компьютера. Основные устройства компьютера, их назначение и взаимосвязь.

    Процессор. Процессор может обрабатывать различные виды информации: числовую, текстовую, графическую, видео и звуковую. Процессор является электронным устройством, поэтому различные виды информации должны в нем обрабатываться в форме последовательностей электрических импульсов.

Такие последовательности электрических импульсов можно записать в виде последовательностей нулей и единиц (есть импульс — единица, нет импульса — нуль), которые называются машинным языком.

ввода и вывода информации. Человек не воспринимает электрические импульсы и очень плохо понимает информацию, представленную в форме последовательностей нулей и единиц, следовательно, в составе компьютера требуются специальные устройства ввода и вывода информации.

Устройства ввода «переводят» информацию с языка человека на машинный язык компьютера, а устройства вывода, наоборот, делают информацию, представленную на машинном языке, доступной для человеческого восприятия.

Устройства ввода информации. Ввод числовой и текстовой информации осуществляется с помощью клавиатуры. Для ввода графической информации или работы с графическим интерфейсом программ чаще всего применяют манипуляторы типа мышь (для настольных персональных компьютеров) и трекбол или тачпад (для портативных компьютеров).

Если мы хотим ввести в компьютер фотографию или рисунок, то используем специальное устройство — сканер. В настоящее время все большее распространение получают цифровые камеры (фотоаппараты и видеокамеры), которые формируют изображения уже в компьютерном формате. Для ввода звуковой информации предназначен микрофон, подключенный ко входу специальной звуковой платы, установленной в компьютере.

Управлять компьютерными играми удобнее посредством специальных устройств — игровых манипуляторов (джойстиков).

Устройства вывода информации. Наиболее универсальным устройством вывода является монитор, на экране которого высвечивается числовая, текстовая, графическая и видеоинформация.

Для сохранения информации в виде «твердой копии» на бумаге служит принтер, а для вывода на бумагу сложных чертежей, рисунков и схем большого формата — плоттер (графопостроитель).

Вывод звуковой информации осуществляется с помощью акустических колонок или наушников, подключенных к выходу звуковой платы.
Оперативная и долговременная память. В компьютере информация хранится в оперативной (внутренней) памяти. Однако при выключении компьютера вся информация из оперативной памяти стирается.

Долговременное хранение информации обеспечивается внешней памятью. В качестве устройств внешней памяти обычно выступают накопители на гибких магнитных дисках (НГМД), накопители на жестких магнитных дисках (НЖМД) и оптические накопители (CD-ROM и DVD-ROM).

Магистраль. Обмен информацией между отдельными устройствами компьютера производится по магистрали (рис. 8).

Подключение компьютера к сети. Человек постоянно обменивается информацией с окружающими его людьми. Компьютер может обмениваться информацией с другими компьютерами с помощью локальных и глобальных компьютерных сетей. Для этого в его состав включают сетевую плату и модем.


Логическое сложение. Таблица истинности.


В алгебре логики объединение двух (или нескольких) высказываний с помощью союза «или» называется операцией логического сложения или дизъюнкцией.

Составное высказывание, образованное в результате логического сложения (дизъюнкции), истинно тогда, когда истинно хотя бы одно из входящих в него простых высказываний.

Операцию логического сложения (дизъюнкцию) принято обозначать либо знаком «v», либо знаком сложения «+»:

Мы записали формулу функции логического сложения, аргументами которой являются логические переменные А и B, принимающие значения истина (1) и ложь (0).

Функция логического сложения F также может принимать лишь два значения: истина (1) и ложь (0). Значение логической функции можно определить с помощью таблицы истинности данной функции, которая показывает, какие значения принимает логическая функция при всех возможных наборах ее аргументов (табл. 3).

По таблице истинности легко определить истинность составного высказывания, образованного с помощью операции логического сложения. Рассмотрим, например, составное высказывание «2 х 2 = 4 Или 3 х 3 = 10». Первое простое высказывание истин-* до (А = 1), а второе высказывание ложно (В = 0); по таблице определяем, что логическая функция принимает значение истина (F = 1), т. е. данное составное высказывание истинно.


^ Правовая охрана программ и данных. Защита информации.

Правовая охрана программ и данных. Правовая охрана программ для ЭВМ и баз данных впервые в полном объеме введена в Российской Федерации Законом «О правовой охране программ для электронных вычислительных машин и баз данных», который вступил в силу 20 октября 1992 г.

Предоставляемая настоящим законом правовая охрана распространяется на все виды программ для компьютеров (в том числе на операционные системы и программные комплексы), которые могут быть выражены на любом языке и в любой форме.

Для признания и реализации авторского права на компьютерную программу не требуется ее регистрация в какой-либо организации. Авторское право на компьютерную программу возникает автоматически при ее создании.

Для оповещения о своих правах разработчик программы может, начиная с первого выпуска в свет программы, использовать знак охраны авторского права, состоящий из трех элементов:

— буквы С в окружности или круглых скобках;

— наименования (имени) правообладателя;

— года первого выпуска программы.

Автору программы принадлежит исключительное право на воспроизведение и распространение программы любыми способами, а также на осуществление модификации программы.

Защита информации.

Защита от нелегального копирования и использования. Программная защита для предотвращения копирования дистрибутивных дискет может состоять в применении нестандартного форматирования. Кроме того, на дискете или CD-ROM может быть размещен закодированный программный ключ, без которого программа становится непригодной к работе и который теряется при копировании.

Аппаратную защиту от нелегального использования можно реализовать с помощью аппаратного клю-ча, который присоединяется обычно к параллельному порту компьютера.

Защита доступа к компьютеру. Для защиты от несанкционированного доступа к данным, хранящимся на компьютере, служат пароли. Компьютер разрешает доступ к своим ресурсам только тем пользователям, которые зарегистрированы и ввели правильный пароль. Каждому конкретному пользователю может быть разрешен доступ только к определенным информационным ресурсам. При этом возможна регистрация всех попыток несанкционированного доступа.

Защита дисков, папок и файлов. Каждый диск, папку и файл можно защитить от несанкционированного доступа: например, установить определенные права доступа (полный или только чтение), причем разные для различных пользователей.

Защита информации в Интернете. На серверах в Интернете размещается различная важная информация: Web-сайты, файлы и т. д. Если компьютер подключен к Интернету, то в принципе любой пользователь, также подключенный к Интернету, может получить доступ к информационным ресурсам этого сервера. Он в состоянии изменить или заменить Web-страницу сайта, стереть или, наоборот, записать файл и т. д. Чтобы этого не происходило, доступ к информационным ресурсам сервера (его администрирование) производится по паролю. Если сервер имеет соединение с Интернетом и одновременно служит сервером локальной сети (Интранет-сервером), то возможно несанкционированное проникновение из Интернета в локальную сеть. Во избежание этого устанавливается программный или аппаратный барьер между Интернетом и Интранетом с помощью брандмауэра (firewall). Брандмауэр отслеживает передачу данных между сетями и предотвращает несанк-ционированный доступ.

Основные логические устройства компьютера (сумматор, регистр).

    Поскольку любая логическая операция может быть представлена в виде комбинации трех базовых операций (И, ИЛИ, НЕ), любые устройства компьютера, производящие обработку или хранение информации, могут быть собраны из базовых логических элементов как из кирпичиков.

Логический элемент И. На входы А и В логического элемента последовательно подаются четыре пары сигналов различных значений, на выходе получается последовательность из четырех сигналов, значения которых определяются в соответствии с таблицей истинности операции логического умножения (рис. 11).
Логический элемент ИЛИ. На входы Аи В логического элемента последовательно подаются четыре пары сигналов различных значений, на выходе получается последовательность из четырех сигналов, значения которых определяются в соответствии с таблицей истинности операции логического сложения (рис. 12).

Логический элемент НЕ. На вход А логического элемента последовательно подаются два сигнала, на выходе получается последовательность из двух сигналов, значения которых определяются в соответствии с таблицей истинности логического отрицания (рис. 13).

Сумматор. В целях максимального упрощения работы компьютера все многообразие математических операций в процессоре сводится к сложению двоичных чисел. Поэтому главной частью процессора является сумматор, который обеспечивает такое сложение.

При сложении двоичных чисел образуется сумма в данном разряде, при этом возможен перенос в старший разряд. Обозначим слагаемые (А, В), перенос (Р) и сумму (S). Построим таблицу сложения одноразрядных двоичных чисел с учетом переноса в старший разряд (табл. 4) 
    
    
     Теперь, на основе полученного логического выражения, можно построить из базовых логических элементов схему полусумматора (рис. 14).
    
     Данная схема называется полусумматором, так как выполняет суммирование одноразрядных двоичных чисел без учета переноса из младшего разряда.

Многоразрядный сумматор процессора состоит из полных одноразрядных сумматоров. На каждый разряд ставится одноразрядный сумматор, причем выход (перенос) сумматора младшего разряда подключен ко входу сумматора старшего разряда.

Триггер. Важнейшей структурной единицей оперативной памяти компьютера, а также внутренних регистров процессора является триггер (рис. 15). Это устройство позволяет запоминать, хранить и считывать информацию (каждый триггер может хранить 1 бит информации).

Для построения триггера достаточно двух логических элементов «ИЛИ» и двух элементов «НЕ».

В обычном состоянии на входы триггера подан сигнал «О», и триггер хранит «О». Для записи «1» на вход S (установочный) подается сигнал «1». При последовательном рассмотрении прохождения сигнала по схеме видно, что триггер переходит в это состояние и будет устойчиво находиться в нем и после того, как сигнал на входе S исчезнет. Триггер запомнил «1», т. е. с выхода триггера Q можно считать «1».

Чтобы сбросить информацию и подготовиться к приему новой, на вход R (сброс) подается сигнал «1», после чего триггер возвратится к исходному «нулевому» состоянию.

Этапы решения задачи с помощью компьютера (построение модели — формализация модели — построение компьютерной модели — проведение компьютерного эксперимента — интерпретация результата).


Рассмотрим процесс решения задачи на конкретном примере: Тело брошено вертикально вверх с начальной скоростью с некоторой высоты. Определить его местоположение и скорость в заданный момент времени. На первом этапе обычно строится описательная информационная модель объекта или процесса. В нашем случае с использованием физических понятий создается идеализированная модель движения объекта. Из условия задачи можно сформулировать следующие основные предположения:

1) тело мало по сравнению с Землей, поэтому его можно считать материальной точкой;

2) скорость бросания тела мала, поэтому:

— ускорение свободного падения считать постоянной величиной;

— сопротивлением воздуха можно пренебречь.

На втором этапе создается формализованная модель, т. е. описательная информационная модель записывается с помощью какого-либо формального языка.

Из курса физики известно, что описанное выше движение является равноускоренным. При заданных начальной скорости (V0)у начальной высоте (Н0) и ускорении свободного падения (g= 9,8 м/с ) зависимость скорости (V) и высоты (Н) от времени (t) можно описать следующими математическими формулами:

На третьем этапе необходимо формализованную информационную модель преобразовать в компъютерную модель, т. е. выразить ее на понятном для компьютера языке. Существуют два принципиально различных пути построения компьютерной модели:

— создание алгоритма решения задачи и его кодирование на одном из языков программирования;

— формирование компьютерной модели с использованием одного из приложений (электронных таблиц, СУБД и т. д.).

Для реализации первого пути надо построить алгоритм определения координаты тела в определенный момент времени и закодировать его на одном из языков программирования, например на языке Visual Basic.

Второй путь требует создания компьютерной модели, которую можно исследовать в электронных таблицах. Для этого следует представить математическую модель в форме таблицы функции зависимости координаты от времени (таблицы функции и таблицы зависимости скорости тела от времени (V = V0 - g • t).

Четвертый этап исследования информационной модели состоит в проведении компьютерного эксперимента. Если компьютерная модель существует в виде программы на одном из языков программирования, ее нужно запустить на выполнение и получить результаты. Если компьютерная модель исследуется в приложении, например в электронных таблицах, можно провести сортировку или поиск данных, построить диаграмму или график и т. д. На пятом этапе выполняется анализ полученных результатов и при необходимости корректировка исследуемой модели. Например, в нашей модели необходимо учесть, что не имеет физического смысла вычисление координаты тела после его падения на поверхность Земли. Таким образом, технология решения задач с помощью компьютера состоит из следующих этапов: построение описательной модели — формализация — построение компьютерной модели — компьютерный эксперимент — анализ результатов и корректировка модели.

^ Моделирование как метод научного познания. Модели материальные и информационные.

Каждый объект имеет большое количество различных свойств. В процессе построения модели выделяются главные, наиболее существенные из них. Так, модель самолета должна иметь геометрическое подобие оригиналу, модель атома — правильно отражать физические взаимодействия, архитектурный макет города — ландшафт и т. д.

Модель — это некий новый объект, который отражает существенные особенности изучаемого объекта, явления или процесса. В разных науках объекты и процессы исследуются под разными углами зрения и строятся различные типы моделей. В физике изучаются процессы взаимодействия и движения объектов, в химии — их внутреннее строение, в биологии — поведение живых организмов и т. д. Возьмем в качестве примера человека; в разных науках он исследуется в рамках различных моделей. В механике его можно рассматривать как материальную точку, в химии — как объект, состоящий из различных химических веществ, в биологии — как систему, стремящуюся к самосохранению, и т. д. С другой стороны, разные объекты могут описываться одной моделью. Так, в механике различные материальные тела (от планеты до песчинки) часто рассматриваются как материальные точки. Один и тот же объект иногда имеет множество моделей , а разные объекты описываются одной моделью. Все модели можно разбить на два больших класса: модели предметные (материальные) и модели знаковые (информационные). Предметные модели воспроизводят геометрические, физические и другие свойства объектов в материальной форме. В процессе обучения широко используются такие модели: глобус (география), муляжи (биология), модели кристаллических решеток (химия) и др. Модели информационные представляют объекты и процессы в форме рисунков, схем, чертежей, таблиц, формул, текстов и т. д. В школе часто применяются такие модели: рисунок цветка (ботаника), карта (география), формула (физика), блок-схема алгоритма (информатика), периодическая система элементов Д. И. Менделеева (химия), уравнение (математика) и т. д.


^ Формализация. Привести пример формализации (например, преобразования описательной модели в математическую).


Естественные языки служат для создания описательных информационных моделей. В истории науки известны многочисленные описательные информационные модели. Например, гелиоцентрическая модель мира, которую предложил Коперник, формулировалась следующим образом:

— Земля вращается вокруг своей оси и вокруг Солнца;

— орбиты всех планет проходят вокруг Солнца.

С помощью формальных языков строятся формальные информационные модели (математические, логические и др.). Процесс построения информационных моделей с помощью формальных языков называется формализацией.

Одним из наиболее широко распространенных формальных языков является математический. Модели, сформированные с использованием математических понятий и формул, называются математическими моделями. Язык математики представляет собой совокупность формальных языков; о некоторых из них (алгебраическом, геометрическом) вы узнали в школе, с другими сможете познакомиться при дальнейшем обучении.

Язык алгебры позволяет формализовать функциональные зависимости между величинами. Так, Ньютон формализовал гелиоцентрическую систему мира Коперника, открыв законы механики и закон всемирного тяготения и записав их в виде алгебраических функциональных зависимостей. В школьном курсе физики рассматривается много разнообразных функциональных зависимостей, выраженных на языке алгебры, которые представляют собой математические модели изучаемых явлений или процессов. Язык алгебры логики (алгебры высказываний) дает возможность строить формальные логические модели. С помощью алгебры высказываний формализуются (записываются в виде логических выражений) простые и сложные высказывания, выраженные на естественном языке. Путем построения логических моделей удается решать логические задачи, создавать логические модели устройств компьютера (сумматора, триггера) и т. д.

В процессе познания окружающего мира человечество постоянно прибегает к моделированию и формализации.
    

Мультимедиа-технология.
Мультимедиа-технология позволяет одновременно использовать различные способы представления информации: числа, текст, графику, анимацию, видео и звук.

Важной особенностью мультимедиа-технологии является ее интерактивноегаъ, т. е. то, что в диалоге с компьютером пользователю отводится активная роль. Графический интерфейс мультимедийных проектов обычно содержит различные управляющие элементы (кнопки, текстовые окна и т. д.).

В последнее время создано много мультимедийных программных продуктов:

— энциклопедии по истории, искусству, географии, биологии и др.;

— обучающие программы по иностранным языкам, физике, химии и т. д.

Мультимедийный компьютер, т. е. компьютер, который может работать с мультимедийными данными, должен иметь звуковую плату для воспроизведения и синтеза звука с подключенными акустическими колонками (наушниками) и микрофоном и дисковод CD-ROM, позволяющий хранить большие по объему мультимедийные данные.

Одним из типов мультимедийных приложений являются компьютерные презентации. Компьютерная презентация представляет собой последовательность слайдов, содержащих мультимедийные объекты: числа, текст, графику, анимацию, видео и звук.

Публикации во Всемирной паутине реализуются в форме мультимедийных Web-сайтов, которые кроме текста могут включать в себя иллюстрации, анимацию, звуковую и видеоинформацию.


^ Описание состояния объекта и описание изменения состояния объекта с помощью статических и динамических информационных моделей.

Система состоит из объектов, которые называются элементами системы. Между элементами системы существуют различные связи и отношения. Например, компьютер является системой, состоящей из различных устройств, при этом устройства связаны между собой и аппаратно (физически подключены друг к другу) и функционально (между устройствами происходит обмен информацией).

Важным признаком системы является ее целостное функционирование. Компьютер нормально работает до тех пор, пока в его состав входят и являются исправными основные устройства (процессор, память, системная плата и т. д.). Если удалить одно из них, например процессор, компьютер выйдет из строя, т. е. прекратит свое существование как система.

Любая система находится в пространстве и времени. Состояние системы в каждый момент времени характеризуется ее структурой, т. е. составом, свойствами элементов, их отношениями и связями между собой. Так, структура Солнечной системы характеризуется составом входящих в нее объектов (Солнце, планеты и пр.), их свойствами (скажем, размерами) и взаимодействием (силами тяготения).

Модели, описывающие состояние системы в определенный момент времени, называются статическими информационными моделями. В физике, например, статические информационные модели описывают простые механизмы, в биологии — классификацию животного мира, в химии — строение молекул и т. д. Состояние систем изменяется во времени, т. е. происходят процессы изменения и развития систем. Так, планеты движутся, меняется их положение относительно Солнца и друг друга; Солнце, как и любая другая звезда, развивается, меняется его химический состав, излучение и т. д.

Модели, описывающие процессы изменения и развития систем, называются динамическими информационными моделями. В физике динамические информационные модели описывают движение тел, в биологии — развитие организмов или популяций животных, в химии — процессы прохождения химических реакций и т. д.

kompleks-tehnicheskih-sredstv-7-programmnoe-obespechenie-i-svyazannie-sistemi-7-vzaimosvyaz-ais-so-smezhnimi-sistemami-8.html
kompleks-trebovanij-k-vipuskniku-po-specialnosti-finansi-i-kredit-specializaciya-bankovskoe-delo.html
kompleks-tyumen-2006-ivahnik-d-e-teoriya-organizacii-uchebno-metodicheskij-kompleks-tyumen-tyumenskij-gosudarstvennij-universitet-2006.html
kompleks-uchebno-metodicheskih-materialov-nizhnij-novgorod-2010-pechataetsya-po-resheniyu-redakcionno-izdatelskogo-soveta-gou-vpo-nglu-specialnost-menedzhment-organizacii-stranica-6.html
kompleks-uchebnoj-disciplini-inostrannij-yazik-anglijskij-iobrazovatelnij-uroven-bazovij-stranica-7.html
kompleks-uchebnoj-disciplini-inostrannij-yazik-nemeckij-uroven-bakalavriata-fakul.html
  • books.bystrickaya.ru/dlya-razvitih-stran-predstavlenie-dvuhgodichnih-otchetov-zadachi-dannogo-obzora-3-klimatologicheskaya-nauka-snizhenie.html
  • abstract.bystrickaya.ru/24-formi-tekushego-kontrolya-i-aktivnih-metodov-obucheniya-rabochaya-programma-disciplina-ds-02-01-nadezhnost-bitovih.html
  • write.bystrickaya.ru/esli-hochesh-bit-zdorov-pozabud-pro-doktorov-vremya-peremen.html
  • occupation.bystrickaya.ru/modernizaciya-antimonopolnoj-politiki-v-rossii.html
  • thescience.bystrickaya.ru/kniga-napisana-dlya-uchenikov-i-uchitelej-a-takzhe-dlya-teh-kogo-interesuet-istoriya-nashej-strani-i-ee-stolici-stranica-3.html
  • student.bystrickaya.ru/1-celi-i-zadachi-prezidentskaya-programma-molodezh-bashkortostana-na-2007-2010-godi-10-16.html
  • paragraph.bystrickaya.ru/kontrol-zachet-uchebnij-plan-20062007-uch-g-specialnost-060813-ekonomika-i-upravlenie-na-predpriyatiyah-transporta.html
  • textbook.bystrickaya.ru/gumanizm-v-italyanskom-vozrozhdenii-chast-8.html
  • esse.bystrickaya.ru/razrabotat-perspektivnij-plan-razvitiya-dpo-do-2017-goda-razrabotat-plan-podgotovki-dobrovolnih-pozharnih-na-2012-god.html
  • kolledzh.bystrickaya.ru/5-chtenie-nauchnoj-literaturi-uchebnoe-posobie-joshkar-ola-2008-udk-378-2-bbk-74-58.html
  • zanyatie.bystrickaya.ru/mmx-v-voprosah-i-otvetah.html
  • writing.bystrickaya.ru/klass-coelomycetes-otchet-o-nauchno-issledovatelskoj-rabote-ocenka-lesopatologicheskogo-sostoyaniya-lesnih-nasazhdenij.html
  • abstract.bystrickaya.ru/23-izdanie-generaciya-baz-dannih-hosti-sistemi-i-tehnologii-kollektivnogo-dostupa-k-informacionnim-resursam.html
  • upbringing.bystrickaya.ru/m-v-derenko-molekulyarnaya-filogeografiya-korennogo-naseleniya-severnoj-azii-po-dannim-ob-izmenchivosti-mitohondrialnoj-dnk.html
  • books.bystrickaya.ru/dogovr-franchajzingu-chast-2.html
  • abstract.bystrickaya.ru/27-normativi-parametri-i-sroki-razreshennogo-ispolzovaniya-lesov-dlya-osushestvleniya-nauchno-issledovatelskoj-i-obrazovatelnoj-deyatelnosti.html
  • desk.bystrickaya.ru/plan-lekcij-i-seminarskih-zanyatij-dlya-studentov-2-go-kursa-ipotoka.html
  • obrazovanie.bystrickaya.ru/poyasnitelnaya-zapiska-nesmotrya-na-globalnie-izmeneniya-rossiya-otnositsya-v-bolshej-stepeni-k-tradicionnomu-obshestvu-dlya-nee-harakteren-orientir-na-nacionalnie-cennosti.html
  • pisat.bystrickaya.ru/tema-platezhesposobnost-i-likvidnost-kommercheskogo-banka-deyatelnost-kommercheskogo-banka-v-rossijskoj-federacii.html
  • report.bystrickaya.ru/informaciya-ob-izmeneniyah-v-federalnom-i-oblastnom-zakonodatelstve-v-sfere-mestnogo-samoupravleniya.html
  • lektsiya.bystrickaya.ru/programma-kursa-ispolzovanie-lgotnih-nalogovih-rezhimov-v-korporativnom-upravlenii-moskva-2008g.html
  • lesson.bystrickaya.ru/ohrana-i-racionalnoe-ispolzovanie-pochv.html
  • studies.bystrickaya.ru/faktori-formiruyushie-assortiment-dekorativnoj-kosmetiki.html
  • kanikulyi.bystrickaya.ru/vserossijskij-vistavochnij-centr-24-27-oktyabrya-kursi-seminari-sekretar-v-sovremennom-ofise.html
  • kontrolnaya.bystrickaya.ru/psihologicheskoe-professionalnoe-konsultirovanie.html
  • bukva.bystrickaya.ru/nauchnaya-kartina-mira-i-eyo-evolyuciya.html
  • letter.bystrickaya.ru/nesovershennoletnie-soderzhashiesya-v-vospitatelnih-koloniyah-vk-pravitelstvo-omskoj-oblasti-upolnomochennij-pri.html
  • nauka.bystrickaya.ru/voprosi-k-seminarskim-zanyatiyam-uchebno-metodicheskij-kompleks-po-discipline-teoriya-evolyucii-napravlenie-podgotovki.html
  • testyi.bystrickaya.ru/8-zameshenie-odnih-funkcionalnih-grupp-na-drugie.html
  • lecture.bystrickaya.ru/analiz-shkolnih-uchebnikov-po-literature-5-9-klassov-avtor-sostavitel-v-ya-korovina.html
  • universitet.bystrickaya.ru/tlaarali-atinasti-anitaua-arnalan-dstemeler-v-f-ryahovskijd-arim-atinas-kompetenttlgn-anitaua-arnalan.html
  • laboratornaya.bystrickaya.ru/razvitie-poznavatelnoj-i-tvorcheskoj-deyatelnosti-uchashihsya-na-zanyatiyah-po-predmetu-izobrazitelnoe-iskusstvo-s-ispolzovaniem-didakticheskoj-mnogomernoj-tehnologii.html
  • knigi.bystrickaya.ru/sho-semej-alasini-blm-blm-mm-sibajlas-zhemorlia-arsi-monitoring-ntizhes-krspe-blm.html
  • prepodavatel.bystrickaya.ru/tema-schastya-v-pese-a-p-chehova-vishnevij-sad.html
  • predmet.bystrickaya.ru/sem-cvetov-radugi-dom-narodnogo-tvorchestva-sbornik-scenariev-i-metodicheskih-materialov-dlya-organizacii-dosuga.html
  • © bystrickaya.ru
    Мобильный рефератник - для мобильных людей.